New upper bounds for the dominant eigenvalue of a matrix with Perron–Frobenius property
نویسندگان
چکیده
Abstract In this paper, we derive some upper bounds for the dominant eigenvalue of a matrix with negative entries, which possess Perron–Frobenius property. Numerical examples are given to illustrate effectiveness our new bounds.
منابع مشابه
determinant of the hankel matrix with binomial entries
abstract in this thesis at first we comput the determinant of hankel matrix with enteries a_k (x)=?_(m=0)^k??((2k+2-m)¦(k-m)) x^m ? by using a new operator, ? and by writing and solving differential equation of order two at points x=2 and x=-2 . also we show that this determinant under k-binomial transformation is invariant.
15 صفحه اولA Property for the α-Diagonally Dominant Matrix with Applications
In this paper, we present a new property for the α diagonally dominant matrix. As applications, we give some criteria to distinguish the nosingular H-matrix. Mathematics Subject Classification: 15A47
متن کاملUpper bounds for the index of cyclicity of a matrix∗
We derive upper bounds for the index of cyclicity of a matrix as a function of the size of the matrix. This result can be used in the characterization of the ultimate behavior of the sequence of consecutive powers of a matrix in the max-plus algebra, which has maximum and addition as its basic operations. If the matrix is irreducible then it is well known that the ultimate behavior is cyclic. F...
متن کاملa study on the effectiveness of textual modification on the improvement of iranian upper-intermediate efl learners’ reading comprehension
این پژوهش به منظور بررسی تأثیر اصلاح متنی بر بهبود توانایی درک مطلب زبان آموزان ایرانی بالاتر از سطح میانی انجام پذیرفت .بدین منظور 115 دانشجوی مرد و زن رشته مترجمی زبان انگلیسی در این پزوهش شرکت نمودند.
A New Inexact Inverse Subspace Iteration for Generalized Eigenvalue Problems
In this paper, we represent an inexact inverse subspace iteration method for computing a few eigenpairs of the generalized eigenvalue problem Ax = Bx [Q. Ye and P. Zhang, Inexact inverse subspace iteration for generalized eigenvalue problems, Linear Algebra and its Application, 434 (2011) 1697-1715 ]. In particular, the linear convergence property of the inverse subspace iteration is preserved.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Inequalities and Applications
سال: 2023
ISSN: ['1025-5834', '1029-242X']
DOI: https://doi.org/10.1186/s13660-023-02924-2